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SOME MONTE CARLO CONCEPTS

Markov chain Monte Carlo methods are used in statistical mechanics to
sample a configuration C' with a probability
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to replace multivariate integrations
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by simple averages
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P(C) is called the canonical (Boltzmann) distribution.
Z(0) is called the partition function.

2(3) = 3 P H)

C

(3 is the inverse of the temperature.
E(C) is the energy of configuration C'.



The Metropolis algorithm which defines
P(C" + C) = min[l, P(C")/P(C)]

is the standard method used to produce the Markov Chain.

For the Boltzmann distribution, the transition probability reduces to
P(C’" - C) = min[l, e 72¥]

where AE = E(C") — E(C). Note the independence from Z(3).

In statistical mechanics,

E(C) ~ O(N)

where N is the number of particles; however, the changes in the configura-
tions are constructed so that typically

AE ~ O(1)



Because the changes are small, correlations exist between successive mea-
surements and the measured variance of a physical quantity
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becomes related to the true variance by
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where 7, 1s an auto-correlation time measured along the chain.

Under typical conditions of interest, 7. is often ~ 10% — 10® for reasons as
simple as the Monte Carlo simulations simulating physical processes that
have long relaxation time.



Example, near a first-order phase transition
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where L is the “length” of the system and D is its dimension.

The same scaling with system size is observed in standard Monte Carlo
simulations.

We cannot change 7,pys but we can try to change 7,.. Recently, several
adaptive Monte Carlo methods for sampling multi-modal distribution, like
the bi-modal one observe near a first-order transition, have been proposed.



SOME ADAPTIVE METHODS

There seems to be two classes of methods:

1. Multi-canonical
a. replace the sampling from multi-modal Boltzmann distribution by
the sampling from a smoother (uni-modal) non-Boltzmann distribu-
tion.
b. Examples: umbrella sampling, multi-canonical sampling, entropic sampling,
etc.

2. Tempering
a. treat the temperature as a random variable to facilitate movement
over barriers
b. Examples
i. expanded ensemble, simulated tempering, adaptive tempering,
etc.
ii. J-walking, exchange Monte Carlo, etc.




The Multi-Canonical Method*

How does one choose I(E)?

* B.A. Berg and T. Nehaus, Phys. Lett. B 267, 249 (1991); Phys. Rev.
Lett. 68, 9 (1992).



The Algorithm.

Require

where
7 = Z w(E)e_H[E]
E

Note that I(F) is independent of (3!

Observe that if
or equivalently

then



Estimate I(FE) from a simulation

or equivalently

Start with H[E] = SE,
1. Metropolis sample with I(E) to estimate h(E)

2. HE]|+ H[E]+In Ngh(E)
3. Repeat



Expanded Ensemble*
What we have been calling P(C') or P(E) are really conditional probabili-
ties.
P(C) = P(C|B)
Consider a joint probability
P(C, ) = P(C|B)P(B)

where P(3) is to be determined. It follows that
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Take
I(C) =) P(C|B)P(B)

B
where we note that I(C) is independent of 3.

How does one choose P(/3)?

A.P. Lubartsev et al., J. Chem. Phys. 96, 1776 (1992); E. Marinari and
G. Parisi, Europhys. Lett. 19, 451 (1992).



The Algorithm.

Choose a finite number of values of 3 designated by (3;.

Require

which implies
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Observe that if

then



Estimate P(3) from a simulation

P(s) = 2P0

or equivalently

Z(3;) = ni +In Zh(3;)

Start with n; = —In Z(3;) estimated by some means,
1. Perform a Monte Carlo simulation

a. Select a 3; with probability P(3)
b. Metropolis sample with P(C|3;)

2. ;i < ni+1n Nﬁh(ﬁl)
3. Repeat



Exchange Monte Carlo*
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The algorithm

For each 3;, simultaneously do a standard Monte Carlo sampling.

Periodically, exchange a pair of configurations ¢+ and j with probability
min[1, exp(—ASAFE)]

where
AB =5 = 55
AE = E(Cj) — E(Cy)

The algorithm as used to date is not adaptive but can be made so by
attempting to adjust the probability with which temperatures pairs are
chosen.

* K. Hukushima and K. Nemoto, unpublished.



REMARKS

e The various adaptive sampling methods make orders of magnitude reduc-
tion in the auto-correlations times.

) The fewer the modes the better.

e They also allow estimation of the partition function Z(3), the free-energy

—In Z(3)/3, and the entropy Inw(E).

 Usually a simulation at one value of 3 determines results at many
values of 3.

e The methods are ad hoc.

() The recursive equation can be interpreted in the context of Bayesian
learning methods.
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e One computational bottleneck is the density estimation step.

- This is the subject of research by R. Silver and myself.

e Another bottleneck is the continued use of standard site-by-site Monte
Carlo simulation methods.

e In actuality, the multi-canonical method and expanded ensemble method
are special cases of a more general method.

e—H[Ei] N 6—5iEi

e Although more general, it is unclear if these adaptive methods are better in
specific applications than other recently established methods, for example,
cluster algorithms, hybrid Monte Carlo, Gibbs ensemble, etc.



